Abstract

ObjectivesThe aim of the present study was to create and test an automatic system for assessing the technical quality of positioning in periapical radiography of the maxillary canines using deep learning classification and segmentation techniques.MethodsWe created and tested two deep learning systems using 500 periapical radiographs (250 each of good- and bad-quality images). We assigned 350, 70, and 80 images as the training, validation, and test datasets, respectively. The learning model of system 1 was created with only the classification process, whereas system 2 consisted of both the segmentation and classification models. In each model, 500 epochs of training were performed using AlexNet and U-net for classification and segmentation, respectively. The segmentation results were evaluated by the intersection over union method, with values of 0.6 or more considered as success. The classification results were compared between the two systems.ResultsThe segmentation performance of system 2 was recall, precision, and F measure of 0.937, 0.961, and 0.949, respectively. System 2 showed better classification performance values than those obtained by system 1. The area under the receiver operating characteristic curve values differed significantly between system 1 (0.649) and system 2 (0.927).ConclusionsThe deep learning systems we created appeared to have potential benefits in evaluation of the technical positioning quality of periapical radiographs through the use of segmentation and classification functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.