Abstract
AbstractAs a part of the component development process for the particle bed reactor (PBR), it is necessary to develop coatings for fuel particles which will be time and temperature stable. These coatings must not only protect the particle from attack by the hydrogen coolant, but must also help to maintain the bed in a coolable geometry and mitigate against fission product release. In order to develop these advanced coatings, a process to produce chemical vapor reaction (CVR) coatings on fuel for PBRs has been developed.The initial screening tests for these coatings consisted of testing in flowing hot hydrogen at one atmosphere. Surrogate fuel particles consisting of pyrolytic graphite coated graphite particles have been heated in flowing hydrogen at constant temperature. The carbon loss from these particles was measured as a function of time. Exposure temperatures ranging from 2500 to 3000 K were used and samples were exposed for up to 14 minutes in a cyclical fashion, cooling to room temperature between exposures. The rate of weight loss measured as a function of time is compared to that from other tests of coated materials under similar conditions. Microscopic examination of the coatings before and after exposure was also conducted and these results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.