Abstract

Recently, surface texturing has received much attention as a method of enhancing the tribological properties of a cutting tool surface. However, effective texture patterns and dimensions on a tool surface are still difficult to obtain and suitable textures can be obtained only by trial and error. In order to overcome this problem, we newly develop cutting tools with dimple-shaped textures having different dimensions and arrays, generated on the tool rake face. In addition, we evaluate their crater wear resistance and cutting forces in steel material cutting. Furthermore, under various cutting conditions, the performances of the cutting tools with dimple-shaped textures are compared with those of tools with groove-shaped textures in order to establish a guideline for designing appropriate surface textures on cutting tool surfaces. A series of cutting experiments demonstrate that the dimple textures significantly improve the crater wear resistance and the tribological behavior on the tool rake face, and they exhibit a superior performance compared with those with groove textures, especially in a severely lubricated environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call