Abstract

We analyze the performance of CSMA in multi-channel wireless networks, accounting for the random nature of traffic. Specifically, we assess the ability of CSMA to fully utilize the radio resources and in turn to stabilize the network in a dynamic setting with flow arrivals and departures. We prove that CSMA is optimal in the ad-hoc mode, when each flow goes through a unique dedicated wireless link from a transmitter to a receiver. It is generally suboptimal in infrastructure mode, when all data flows originate from or are destined to the same set of access points, due to the inherent bias of CSMA against downlink traffic. We propose a slight modification of CSMA that we refer to as flow-aware CSMA, which corrects this bias and makes the algorithm optimal in all cases. The analysis is based on some time-scale separation assumption which is proved valid in the limit of large flow sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.