Abstract

Cry1A.105 is a Cry protein expressed in some transgenic Bacillus thuringiensis (Bt) maize products. In this study, performance of five populations of fall armyworm, Spodoptera frugiperda (J.E. Smith), were evaluated on four non-Bt and eight commercial and experimental Bt maize hybrids/lines (hereafter referred as maize products). The five insect populations included one Cry1A.105-susceptible strain, two Cry1A.105-resistant strains, and two F1 heterozygous genotypes. The eight Bt maize hybrids/lines consisted of five single-gene Bt maize products containing Cry1A.105, Cry2Ab2, Cry1F, or Cry1Ab protein, and three pyramided Bt maize products expressing Cry1A.105/Cry2Ab2, Cry1A.105/Cry2Ab2/Cry1F, or Cry1Ab/Vip3A for targeting aboveground lepidopteran maize pests. In the study, neonates of each population were tested on leaf tissues in the laboratory and whole plants in the greenhouse. Cry1A.105 and Cry1F maize killed 92.2–100% susceptible larvae in both test methods, while resistant larvae survived well on these two maize products. Performance of the two F1 populations on Cry1A.105 and Cry1F maize varied between the two test methods. In leaf tissue bioassay, Cry1Ab maize was marginally effective against the susceptible population. In contrast, few live larvae and little leaf injury from any of the five populations were observed on Cry2Ab2 and the three pyramided Bt maize products. The results of this study showed evidence of cross resistance of the Cry1A.105-resistant S. frugiperda to Cry1F and Cry1Ab maize, but not to the Bt maize products containing Cry2Ab2 or Vip3A. Data generated from this study will be useful in developing resistance management strategies for the sustainable use of Bt maize technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call