Abstract

The performance of perfectly matched layer (PML) absorbing boundary conditions is studied for finite-difference time-domain (FDTD) specific absorption rate (SAR) assessment, using convolutional PML (CPML) implementation of PML. This is done by investigating the variation of SAR values when the amount of free-space layers between the studied object and PML boundary is varied. Plane-wave exposures of spherical and rectangular objects and a realistic human body model are considered for testing the performance. Also, some results for dipole excitation are included. Results show that no additional free-space layers are needed between the numerical phantom and properly implemented CPML absorbing boundary, and that the numerical uncertainties due to CPML can be made negligibly small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.