Abstract

The performance of the cone meter when measuring the cryogenic fluid was investigated by numerical simulation. The results show that the discharge coefficient and pressure loss coefficient of the cone meter are almost constant when the Reynolds number in the “stable region”. The cryogenic fluids, especially the liquid hydrogen, have wider stable Reynolds number ranges than the water. There is little effect of cavitation on the discharge coefficient and pressure loss coefficient at the initial stage of cavitation. Thus the effect of slight cavitation on the measurement error of the flow rate is small, whose relative error is less than ±0.5% in present cases. This study opens a new avenue for measuring the flow rate of the cryogenic fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call