Abstract

For radio communication systems powerful error correction codes are necessary to operate in noisy and fading channel conditions. Iterative forward error correction schemes like Turbo codes can achieve near Shannon capacity performance on memory-less channels and also perform well on correlated fading channels. The key to the excellent decoding performance of the Turbo coding systems is the BCJR algorithm in conjunction with the iterative processing of the soft decision information. A very popular modulation technique is Differential Phase Shift Key (DPSK) which is not only a simple non-coherent modulation and demodulation technique, it is also a recursive rate one code. Combining DPSK with a single convolutional code structure as an iterative inner outer forward error correction system can provide excellent Turbo like performance. Monte Carlo simulation results will be shown for the Additive White Gaussian Noise (AWGN) and Rayleigh fading channels for 1,2, 3 and 4 bits per symbol DPSK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.