Abstract
In this letter, a system combining compressive sensing (CS)-based image reconstruction and object detection algorithm is introduced. The use of CS is a promising approach for search-and-rescue applications, since it highly reduces the amount of data that needs to be transmitted. However, the high-quality reconstruction of such images is a challenging task due to the complexity of structures and the number of tiny details, possibly being the objects of interest. Hence, the performance of image reconstruction is evaluated in terms of the missing data amount and the object detection quality. Object detection is performed by applying two-stage data segmentation algorithm based on mean shift clustering. The results quality is measured using structural similarity index and peak signal-to-noise ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.