Abstract

Nowadays the blended cements acquire the merit of high significance due to the thermal, energetic and ecological demands for ordinary Portland cement (PC) production. Metakaolin as a partial substitute of PC represents important pozzolana contributing to production of effective cement composites with high quality. Pozzolanic reaction of metakaolinite with PC in the presence of water is main reason of this statement. Comparison of three types of metakaolin sand (fineness below 60 μm) with different metakaolinite content (31–40 mass%) is presented in this study. The substitution of PC with metakaolin sand of the maximal metakaolinite content (40 mass%) leads to the highest compressive strengths of relevant composites. This is valid for composites with the highest substitution of PC by metakaolin sand in specimens (20 and 40 mass%). The best effectiveness of pozzolanic reaction is given especially by the highest consumption of portlandite which represents composite with the maximal metakaolinite content in metakaolin sand (40 mass%) and the higher substitution level of PC by metakaolin sand in specimens. This fact is connected with the improvement of pore structure parameters resulting in the pore structure refinement as well as permeability decreases. Both 29Si MAS NMR and 27Al MAS NMR spectra of metakaolin sands and respective composites confirm the most intense pozzolanic reaction in the case of metakaolin sand with the highest metakaolinite content (40 mass%). The results are properly supplemented by scanning electron microscopy (SEM) identifying the formed typical phases. The study has shown that metakaolin sand with reduced metakaolinite contents is also applicable as a pozzolanic addition to PC in the on-coming building practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.