Abstract

An ideal injectable bone cement should be able to fill fully the fractures gap and provide good mechanical support. In the present work, the mineralized collagen and calcium sulphate dehydrate (CSD) was incorporated into α-calcium sulphate hemihydrates (α-CSH) to explore an injectable composite cement. The injectability, the setting time and the biomechanics properties were investigated. A porcine thoracolumbar burst fracture model was used to evaluate the biomechanical performance of composite cements. The porcine thoracolumbar burst fracture models in vitro were prepared. A half of models was made by the vertebroplasty of the composite cements, the other half of models was used as control. Imaging analysis showed the composite cements distributed uniformly and solidified well. Biomechanical test showed the ability of the composite cements to repair spinal burst fractures was significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.