Abstract

Atmospheric Phase Screen (APS) is a major noise that suppresses the accuracy of InSAR deformation time series products. Several correction methods have been developed to perform APS reduction in the InSAR analysis, in which an algorithm called Common Scene Stacking (CSS) method draws wide attention in the community as the method was supposed to effectively separate atmospheric contributions without any external data. CSS was initially proposed for solving linearly interseismic deformation. Whether CSS can be applied in nonlinear deformation cases remains unsolved. In this study, we first conduct a series of data simulations including variable elastic deformation components and also propose an iterative strategy to address the inherent weak edge constraint issues in CSS under different deformation conditions. The results show that signal-to-noise ratio (SNR) is a key parameter affecting the performance of CSS in APS separation. For example, the recovery rate of deformation can generally be greater than 80% from datasets with SNR greater than 10 dB. Our results imply that CSS can favor further improvement of InSAR measurement accuracy. The proposed method in this study was applied to assessing deformation history across the 2020 Mw 5.7 Dingjie earthquake, in which logarithmic postseismic deformation history and coseismic contribution can be successfully retrieved once.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.