Abstract

Initiation of warfarin therapy is associated with bleeding owing to its narrow therapeutic window and unpredictable therapeutic dose. Pharmacogenetic-based dosing algorithms can improve accuracy of initial warfarin dosing but require rapid genotyping for cytochrome P-450 2C9 (CYP2C9) *2 and *3 single nucleotide polymorphisms (SNPs) and a vitamin K epoxide reductase (VKORC1) SNP. We evaluated 4 commercial systems: INFINITI analyzer (AutoGenomics, Carlsbad, CA), Invader assay (Third Wave Technologies, Madison, WI), Tag-It Mutation Detection assay (Luminex Molecular Diagnostics, formerly Tm Bioscience, Toronto, Canada), and Pyrosequencing (Biotage, Uppsala, Sweden). We genotyped 112 DNA samples and resolved any discrepancies with bidirectional sequencing. The INFINITI analyzer was 100% accurate for all SNPs and required 8 hours. Invader and Tag-It were 100% accurate for CYP2C9 SNPs, 99% accurate for VKORC1 -1639/3673 SNP, and required 3 hours and 8 hours, respectively. Pyrosequencing was 99% accurate for CYP2C9 *2, 100% accurate for CYP2C9 *3, and 100% accurate for VKORC1 and required 4 hours. Current commercial platforms provide accurate and rapid genotypes for pharmacogenetic dosing during initiation of warfarin therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.