Abstract

Palm oil mill effluent (POME), wastewater generated from palm oil production, is known for its extremely high chemical oxygen demand and brownish color. Anaerobic digestion is the primary treatment method for POME in the palm oil industry; however, anaerobically treated POME has high concentrations of residual contaminants and color intensity. This study proposes an approach to treat anaerobically-treated POME in recycled water for industrial applications by integrating preliminary organic precipitation, electrocoagulation, and electrooxidation (EO). The EO process was optimized in terms of the current density, electrolysis time, electrode arrangement, and feed flow rate. At a current density of 60 mA/cm2 and an electrolysis time of 9 min, the EO process with a graphite anode and stainless-steel cathode in the monopolar electrode configuration reduced the phenolic concentration and color in the preliminary-treated POME from 8.95 mg/L and 317.19 ADMI to 0.25 mg/L and 26.10 ADMI, respectively. Additionally, the EO process exhibited a 92.26% efficiency in lowering the ammonium-nitrogen content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.