Abstract
The performance of the chilled ceiling (CC) displacement ventilation (DV) systems is constrained by latent load removal capacity and cost of supply air dehumidification to prevent condensation on the ceiling. In this study, a liquid desiccant dehumidification membrane cycle (LDMC) is mathematically modelled to replace the CC and remove directly latent and sensible load from indoor space through the membrane. The desiccant system is coupled with the DV system. An optimized operational strategy is adopted while allowing ceiling temperature to drop to lower values than conventional CC/DV. The optimized LDMC-C/DV system was implemented in an office space in Beirut climate. It was found that decreasing the membrane liquid desiccant temperature resulted in a significant decrease in the total cooling energy of the system, while increasing the solar heating energy of the desiccant regeneration. At optimal set points, a decrease of 49% in energy consumption was observed compared to the conventional CC/DV system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.