Abstract

Co-containing NO x storage and reduction (NSR) catalysts were studied for their NO x storage and NO x conversion behavior. It was found that addition of 5% Co increased the NO x storage capacity of a 1% Rh/15% Ba catalyst by 50% and that of a 1% Pt/15% Ba catalyst by 100%. This promotional effect was attributed to the high oxidizing ability of Co, present in the form of Co 3O 4, providing extra oxidation sites for NO to NO 2 conversion and more contact area for NO 2 spillover to Ba storage sites. Empirical models were developed to predict the NO x conversion capacity of the catalyst as a function of total cycle time and the fraction spent in the lean phase. Using these models, it was found that 5% Co also improved the performance of 1% Pt/15% Ba and 1% Rh/15% Ba catalysts at higher lean fractions, allowing substantial improvement in overall fuel efficiency. The reduction capacity of Co was much less than that of noble metals, such that noble metals were still necessary (although at a reduced loading) for regenerating the catalyst in the rich phase. Along these lines, it was found that a 0.25% Pt/5% Co/15% Ba-containing catalyst showed better performance than a 1% Pt/15% Ba-containing catalyst. This implies that the cost of NSR catalysts can be substantially reduced by replacing some of the Pt with Co as the active oxidizing metal in NSR catalyst formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.