Abstract
This paper presents the performance of coated carbide tools when grooving various density hardboards and wood-chip cement boards. Work materials of low density (about 0.8g/cm3) and high density (about 1.2g/cm3) were tested. The coating materials studied were chromium carbide, titanium carbonitride, and titanium carbide, which were synthesized on P30 carbide substrate using a chemical vapor deposition method; titanium nitride, chromium nitride, and titanium carbonitride were synthesized using the physical vapor deposition method. Cutting tests were performed during grooving at a cutting speed of 1000m/min and a feed rate of 0.1 mm/rev. The results of the study show that the coated carbide tools are more advantageous in reducing the progression of tool wear and retaining lower normal force and noise level when cutting both hardboard and wood-chip cement board of high density than was the uncoated carbide tool. The wear rate of the coated carbide tools for the wood-chip cement board increased more rapidly than that of the hardboard with increasing densities. Though the coated carbide tools suffered more wear with the low-density wood-chip cement board than with hardboard, their normal force and noise level were always lower for the low-density wood-chip cement board.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.