Abstract

ObjectivesThe purpose of this study was to assess the performance of cardiac magnetic resonance (CMR) methods for discriminating acute from chronic myocardial infarction (MI). BackgroundAlthough T2-weighted CMR is thought to be accurate in differentiating acute from chronic MI, few studies have reported on diagnostic accuracy, and these generally compared extremes in infarct age (e.g., <1 week old vs. more than 6 months old) and did not evaluate other CMR methods that could be informative. MethodsA total of 221 CMR studies were performed at various time points after ST-segment elevation myocardial infarction in 117 consecutive patients without a history of MI or revascularization enrolled prospectively at 2 centers. Imaging markers of acute MI (<1 month) were T2 hyperintensity on double inversion recovery turbo spin echo (DIR-TSE) images, microvascular obstruction (MO) on delayed-enhancement CMR, and focally increased end-diastolic wall thickness (EDWT) on cine-CMR. ResultsThe prevalence of T2-DIR-TSE hyperintensity decreased with infarct age but remained substantial up to 6 months post-MI. In contrast, the prevalence of both MO and increased EDWT dropped sharply after 1 month. T2-DIR-TSE sensitivity, specificity, and accuracy for identifying acute MI were 88%, 66%, and 77% compared with 73%, 97%, and 85%, respectively, for the combination of MO or increased EDWT. On multivariable analysis, persistence of T2-hyperintensity in intermediate-age infarcts (1 to 6 months old) was predicted by larger infarct size, diabetes, and better T2-DIR-TSE image quality score. For infarct size ≥10% of the left ventricle, a simple algorithm incorporating all CMR components allowed classification of infarct age into 3 categories (<1 month old, 1 to 6 months old, and ≥6 months old) with 80% (95% confidence interval: 73% to 87%) accuracy. ConclusionsT2-DIR-TSE hyperintensity is specific for infarcts <6 months old, whereas MO and increased EDWT are specific for infarcts <1 month old. Incorporating multiple CMR markers of acute MI and their varied longevity leads to a more precise assessment of infarct age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call