Abstract
We propose a novel hybrid CMOS comprising a Si-channel pMOSFET and an asymmetric InP/InGaAs nMOSFET in the nanometer regime for analog applications. The performance of such a CMOS is evaluated in terms of voltage gain and gain-bandwidth (GBW) product at two different channel lengths (L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> ), 50 and 30 nm, using extensive device simulations. Our investigations reveal that the maximum gain of the hybrid CMOS inverter is improved by 37.5% and 92.1% for asymmetric In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.75</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.25</sub> As nMOS devices with InP drain at L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> = 30 nm for W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> /W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> = 3 and 8, respectively, as compared with an equally sized Si inverter having W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> /W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> = 3. In addition, GBW product of hybrid CMOS (HAS3) comprising asymmetric In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.75</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.25</sub> As nMOSFET with InP source and Si pMOSFET is increased by 148.1% and 260.4% at L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> = 30 and 50 nm, respectively, for W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> /W <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> = 3, compared with its Si counterpart. Furthermore, the HAS3 device yields the highest GBW peak, unity current gain frequency, and maximum oscillation frequency as compared with other hybrid and Si CMOS devices at L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> = 30 and 50 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.