Abstract

We have designed, implemented and studied the performance at liquid nitrogen temperature (77 K) of a CMOS ternary full adder and its building blocks, the simple ternary inverter (STI), positive ternary inverter (PTI) and negative ternary inverter (NTI), and compared the corresponding performance at room temperature (300 K). The ternary full adder has been fabricated in 2 μm, n-well CMOS through MOSIS. In a ternary full adder, the basic building blocks, the PTI and NTI, have been developed using combinations of a CMOS inverter and transmission gate(s). There is close agreement between the simulated and measured voltage transfer characteristics and noise margins of ternary-valued devices. The measured transient times for the NTI, PTI and ternary full adder at 77 K show an improvement by a factor of ≈1.5–2.5 over the corresponding values at 300 K. The present design does not use linear resistors and depletion-mode MOSFETs to implement the ternary full adder and its building blocks, and is fully compatible with current CMOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.