Abstract

A unique mesoporous sol-gel glass possessing a highly ordered porous structure (with three pore sizes of about 50, 150, and 200 A diameter) was used as a support material for immobilization of the enzyme chloroperoxidase (CPO). CPO was bound onto the glass via a bifunctional ligand, trimethoxysilylpropanal. In situ production of the cosubstrate, H2O2, was achieved using glucose oxidase. Solvent stability in acetonitrile mixtures was enhanced when a pore size larger than the size of CPO was used (i.e., 200 A). From these results, it appears that the glass-enzyme complex developed through the present work can be used as high-performance biocatalysts for various chemical-processing applications, particularly in harsh conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.