Abstract
The goal of the present study is to treat industrial wastewater containing sodium aluminate using a chemically inert polyurea (PU) based thin film composite (TFC) reverse osmosis (RO) membrane to promote water reclamation and zero liquid discharge (ZLD). Pretreatment was carried out to reduce the pH of the effluent from 12.5 to 7.1. The TFC RO membrane was fabricated by coating PU on Polyethersulfone (PES) substrate by interfacial polymerization (IP). The surface and cross-sectional morphologies of the membrane were characterized using scanning electron microscopy (SEM). The indigenously synthesized membrane was effective in the removal of total dissolved solids (TDS), chemical oxygen demand (COD), colour and electrical conductivity. The experiments were conducted by varying the feed composition of the wastewater. The maximum water recovery and flux were found to be 74% and 73.9 L/m2·h. RO process using PU membrane exhibited significant potential for cost effective, safe and pollution-free treatment of sodium aluminate industrial effluent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.