Abstract

While radiologists can describe a fracture’s morphology and complexity with ease, the translation into classification systems such as the Arbeitsgemeinschaft Osteosynthesefragen (AO) Fracture and Dislocation Classification Compendium is more challenging. We tested the performance of generic chatbots and chatbots aware of specific knowledge of the AO classification provided by a vector-index and compared it to human readers. In the 100 radiological reports we created based on random AO codes, chatbots provided AO codes significantly faster than humans (mean 3.2 s per case vs. 50 s per case, p < .001) though not reaching human performance (max. chatbot performance of 86% correct full AO codes vs. 95% in human readers). In general, chatbots based on GPT 4 outperformed the ones based on GPT 3.5-Turbo. Further, we found that providing specific knowledge substantially enhances the chatbot’s performance and consistency as the context-aware chatbot based on GPT 4 provided 71% consistent correct full AO codes for the compared to the 2% consistent correct full AO codes for the generic ChatGPT 4. This provides evidence, that refining and providing specific context to ChatGPT will be the next essential step in harnessing its power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.