Abstract
Large language models (LLMs) have impacted advances in artificial intelligence. While LLMs have demonstrated high performance in general medical examinations, their performance in specialized areas such as nephrology is unclear. This study aimed to evaluate ChatGPT and Bard in their potential nephrology applications. Ninety-nine questions from the Self-Assessment Questions for Nephrology Board Renewal from 2018 to 2022 were presented to two versions of ChatGPT (GPT-3.5 and GPT-4) and Bard. We calculated the correct answer rates for the five years, each year, and question categories and checked whether they exceeded the pass criterion. The correct answer rates were compared with those of the nephrology residents. The overall correct answer rates for GPT-3.5, GPT-4, and Bard were 31.3% (31/99), 54.5% (54/99), and 32.3% (32/99), respectively, thus GPT-4 significantly outperformed GPT-3.5 (p<0.01) and Bard (p<0.01). GPT-4 passed in three years, barely meeting the minimum threshold in two. GPT-4 demonstrated significantly higher performance in problem-solving, clinical, and non-image questions than GPT-3.5 and Bard. GPT-4's performance was between third- and fourth-year nephrology residents. GPT-4 outperformed GPT-3.5 and Bard and met the Nephrology Board renewal standards in specific years, albeit marginally. These results highlight LLMs' potential and limitations in nephrology. As LLMs advance, nephrologists should understand their performance for future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.