Abstract

A pristine carbon xerogel (AX) and two hybrid samples (AX-3% and AX-9%), with different graphene percentages (3 and 9 wt%), were synthesized using a fast and economical process. It was observed that graphene produces less shrinkage of the xerogel structure during synthesis. Moreover, the electrical conductivity of the materials increases linearly with the percentage of graphene added. Thus, AX-9% presents an electrical conductivity 135 and 321% greater than that of AX-3% and AX, respectively. As a result of the good pore size distribution and high electrical conductivity of AX-9%, when this material is used as electrode in supercapacitors, the resistance of the cell is reduced; therefore, better power densities are obtained. However, its capacitance values are the same as those of AX-3%. The performances of these materials as electrodes in supercapacitors were evaluated taking into account the influence of their porosity and electrical conductivity. Moreover, AX and AX-9% were subjected to mild oxidation with air to study the effect of air on the porosity, electrical conductivity, and performance of these treated samples as electrodes in supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.