Abstract

The problem of blind channel estimation for downlink space-frequency block coded multi-carrier code division multiple access (SFBC MC-CDMA) schemes is considered. For these schemes, the authors first develop a system model for complex modulated signals, which reduces the multichannel estimation problem to a single-input single-output problem. Then, they present an intuitive subspace-based channel estimation method along with the corresponding necessary and sufficient conditions under which the channel estimate is unique (within a complex scalar). Their studies highlight two interesting properties of SFBC MC-CDMA systems: (i) there is no antenna order ambiguity (also known as permutation ambiguity) even though only one spreading code is assigned to each user; (ii) channel identifiability is guaranteed, regardless of the channel zeros location. They also establish the unbiasedness of the channel estimates and derive closed-form expressions for the mean-square-error of the estimates as well as the corresponding Cramer-Rao bound (CRB). In the derivation of the CRB, they suggest a novel approach which assumes the knowledge of only the spreading code of desired user. This approach results in a tighter bound than the CRB derived based on the knowledge of all users' signatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call