Abstract

Computational neuroscience models of vision and neural network models for object recognition are often framed by different research agendas. Computational neuroscience mainly aims at replicating experimental data, while (artificial) neural networks target high performance on classification tasks. However, we propose that models of vision should be validated on object recognition tasks. At some point, mechanisms of realistic neuro-computational models of the visual cortex have to convince in object recognition as well.In order to foster this idea, we report the recognition accuracy for two different neuro-computational models of the visual cortex on several object recognition datasets. The models were trained using unsupervised Hebbian learning rules on natural scene inputs for the emergence of receptive fields comparable to their biological counterpart. We assume that the emerged receptive fields result in a general codebook of features, which should be applicable to a variety of visual scenes.We report the performances on datasets with different levels of difficulty, ranging from the simple MNIST to the more complex CIFAR-10 or ETH-80. We found that both networks show good results on simple digit recognition, comparable with previously published biologically plausible models. We also observed that our deeper layer neurons provide for naturalistic datasets a better recognition codebook. As for most datasets, recognition results of biologically grounded models are not available yet, our results provide a broad basis of performance values to compare methodologically similar models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.