Abstract

Simultaneous stabilization of cadmium (Cd) and arsenic (As) in co-contaminated soil is challenging in environmental remediation because of their opposite properties. In this study, biochar-supported nanoscale zero-valent iron (nZVI-BC) was designed for simultaneously decreasing the soil availability of Cd and As and their bioaccumulation in vegetables. It was found that nZVI-BC exhibited remarkable performance for the stabilization of Cd and As in soil, and their availability decreased by 34.93% and 32.64% compared to the control sample, respectively, under 1.00% nZVI-BC treatment. The increase of soil pH and complexation dominated the Cd remediation process, while the formation of precipitation together and surface complexes transformed labile As into stable forms. Pot experiments showed that nZVI-BC application inhibited the bioaccumulation of Cd and As in vegetables by 23.63–36.48% and 43.09–45.10%, respectively, and hence effectively decreased the cancer risks by 38.19–42.93% related with vegetable consumption (P < 0.05). This study revealed that nZVI-BC is a promising amendment for achieving the simultaneous remediation of Cd and As co-contaminated farmland soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call