Abstract

Four types of biologically active molecules were examined for their structure/activity relationships as applied to textile functionalization. Bio-molecules including enzymes, peptides, carbohydrates, and lipids have been found to retain their activity when linked to cotton fabrics. Wound dressing protection against the protease destruction caused by human neutrophil elastase was examined with cellulose conjugates and formulations of peptides, carbohydrates, and lipids attached with various chemistries to cotton dressings. These serve as a model for protective textiles at the surface of the skin. Additional biological activities that were explored included antibacterial and haemostatic fabrics related to wound healing, and neurotoxin neutralization related to decontamination. Lysozyme was found to have robust antibacterial activity when conjugated to cotton. Peptide conjugates of cellulose have been explored as enzyme substrates, antimicrobial agents, and cell adhesion promoters on textiles for wound healing. Carbohydrates ranging from low molecular weight monosaccharides to high molecular weight polysaccharides have both molecular and functional activity when crosslinked or grafted onto cotton with numerous textile performance properties. Textile bound lipids have been explored for a variety of applications including antibacterial, hygienic function, and enzyme inhibition. A lipid: albumin complex that serves as a carrier transfer agent involved in enzyme inhibition is given as an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.