Abstract

Prosthetic upgrades are specialized prosthetics that enable patients to participate in more demanding recreational activities, such as running. This study examines the use of prosthetic limbs, specifically the athletic prosthetic foot. The current research focused on the manufacturing and production properties of an samples athletic prosthetic Foot made from composite materials based on a polymethyl methacrylate resin (PMMA) reinforced with various fibers (UHMWPE, Perlon, Carbon fiber, and Glass fiber). The finite element method (ANSYS-19R) is used to build an athletic prosthetic model and apply boundary conditions to investigate the influence of deformation and stored energy on the performance of the sports prosthetic foot. Six laminates have been manufactured, and it has been discovered that adding a number of carbon fiber layers to UHMWPE has a better effect on deformation than adding a glass fiber 26% improvement. Furthermore, the findings show there is an improvement in performance when the number of classes was doubled, as the rate of improvement between the laminate to which carbon fibers were added was 31%, and between the laminate to which glass fibers were added by 32% under the same boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.