Abstract
Total phosphorus (TP) removal performance and application for wastewater treatment of polyphosphate-accumulating bacteria (PAB) in constructed wetlands (CWs) were investigated. In this study, a novel isolated ultraviolet (UV) mutant PZ2 with phosphate-accumulating ability was screened from domestic wastewater and identified as Pseudomonas putida by 16S ribosomal DNA (rDNA) sequencing analysis. The TP removal performance of PZ2 in the synthetic wastewater reached the highest of 93.95% within 45h. Two vertical subsurface flow CWs planted with two aquatic macrophytes Canna indica and Acorus calamus were newly designed. After inoculating PZ2 into two CWs within 45h, the average chemical oxygen demand (COD), TP, and ammonia-nitrogen (NH3-N) removal efficiencies reached 68.50, 60.22, and 66.81%, respectively. Vegetation type and filter size significantly influenced the TP removal capability of PZ2 in CWs. Meanwhile, considerable qualitative differences were found in the pollutant removal efficiencies of PZ2 with and without CWs in synthetic wastewater. These results could also indicate potential applications of the UV mutagenesis in PAB isolation and the newly designed CWs in wastewater treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.