Abstract

Performance of an electromagnetic induction launcher is considered for three types of armatures. These are: Solid, 1-element wound and 16-element wound aluminum ar natures. The one element wound armature has uniform current density throughout. Because of the radial distribution of the current density, the wound armature can withstand field reversal (working against embedded flux in the armature) and still maintain low temperature. Slingshot simulations were performed, for several configurations. Best performance was obtained for a single element wound armature with two field reversals. For a 60 kg projectile, 10.5 cm coil inner radius and 5.5 cm coil build, the velocity after 50 meters of launcher length (670 stages) exceeded 3.5 km/sec with an overall efficiency of about 45%. For the same parameters the solid and 16-element wound armatures reach a velocity of about 3.3 km/sec after 800 stages (60 meters of launcher length) but without field reversal. A velocity of 3.5 km/sec is possible after 60 meters of launcher length with the 16-element wound armature with one field reversal, but the temperature is close to the melting temperature of aluminum. In all simulations with a solid armature, melting of some of the surface material occurs. However, it is shown that most of the melting occurs after contribution has been made to the forward going pressure, that is, melting does not affect the electrical performance of the launcher. The effect of coil firing tune jitter on launcher performance is also considered and is found to be very small for realistic perturbations. For {plus_minus}2 {mu}-secs random jitter, the reduction in the final velocity for a 60 meter launcher with a solid armature is less than 0.1% and the increase in temperature is only 2%. This result holds for all types of armatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.