Abstract

Planar virtual sound barrier systems have been used successfully to reduce noise radiation through an opening without affecting natural ventilation and lighting. However, the complexity of a fully coupled control system grows at the rate proportional to the square of the number of channels and this make the system implementation become impractical for enclosures with large openings. To reduce the system complexity, this paper proposes an independent planar virtual sound barrier, which is a multi-channel system consisting of many independent single channel active noise control systems. Each single channel system is “independent” in the sense that the control source output of the system is updated only with the signal from its own error sensor. Based on the analytical model of sound radiation through the opening of a rectangular enclosure, the transfer functions from both primary and control sources are calculated first. Then the noise reduction performance, the stability, and the convergence behavior of both fully coupled and independent planar virtual sound barrier systems are investigated. It is found that the independent system with no control output constraint becomes inherently unstable at some frequencies; however its stability can be improved by applying some control output constraint. Reducing the number of channels and the distance between secondary loudspeakers and error microphones can also increase system stability but at the cost of smaller noise reduction. When the system is inherently stable and there is no constraint on control output, the independent system can provide the same noise reduction as the fully coupled one but with faster convergence speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.