Abstract

Abstract We have developed an imaging Fourier transform spectrometer (FTS) for space-based far-infrared astronomical observations. The FTS employs newly developed photoconductive detector arrays with a capacitive trans-impedance amplifier, which makes the FTS a completely unique instrument. The FTS was installed as a function of the far-infrared instrument (FIS: Far-Infrared Surveyor) aboard the Japanese astronomical satellite, AKARI, which was launched on 2006 February 21 (UT) from Uchinoura Space Center. The FIS-FTS had been operated for more than one year before liquid helium ran out on 2007 August 26. The FIS-FTS was operated nearly six hundreds times, which corresponds to more than one hundred hours of astronomical observations and almost the same amount of time for calibrations. As expected from laboratory measurements, the FIS-FTS performed well and has produced a large set of astronomical data for valuable objects. Meanwhile, it has become clear that the detector transient effect is a considerable factor for FTSs with photoconductive detectors. In this paper, the instrumentation of the FIS-FTS and interesting phenomena related to FTS using photoconductive detectors are described, and future applications of this kind of FTS system are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.