Abstract

The use of adsorption on activated carbon fiber cloth (ACFC) followed by electrothermal swing adsorption (ESA) and postdesorption pressure and temperature control allows organic gases with boiling points below 0 °C to be captured from air streams and recovered as liquids. This technology has the potential to be a more sustainable abatement technique when compared to thermal oxidation. In this paper, we determine the process performance and energy requirements of a gas recovery system (GRS) using ACFC-ESA for three adsorbates with relative pressures between 8.3 × 10(-5) and 3.4 × 10(-3) and boiling points as low as -26.3 °C. The GRS is able to capture > 99% of the organic gas from the feed air stream, which is comparable to destruction efficiencies for thermal oxidizers. The energy used per liquid mole recovered ranges from 920 to 52,000 kJ/mol and is a function of relative pressure of the adsorbate in the feed gas. Quantifying the performance of the bench-scale gas recovery system in terms of its ability to remove organic gases from the adsorption stream and the energy required to liquefy the recovered organic gases is a critical step in developing new technologies to allow manufacturing to occur in a more sustainable manner. To our knowledge, this is the first time an ACFC-ESA system has been used to capture, recover, and liquefy organic compounds with vapor pressures as low as 8.3 × 10(-5) and the first time such a system has been analyzed for process performance and energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call