Abstract

The ability to track fish in the vicinity of dams and detect the presence of fish in fishways (also referred to as fish ladders) is critical to understanding the migration biology of upstream migrating fish and their passage success. Acoustic telemetry provides a valuable method within the telemetry toolbox, but has rarely been used in noisy, constrained, swift-flowing, and air-entrained environments such as fishways because of the perceived limitations of acoustic telemetry in such environments relative to other techniques such as radio telemetry. However, there have been no published studies that represent systematic evaluations of both detection efficiency based on number of transmitted signals and detection probabilities based on number of fish detected in fishways for acoustic telemetry. As such, the efficacy of acoustic telemetry in a fishway was evaluated using both controlled field experiments and movements of live fish at the Wanapum Dam fishway on the Columbia River in Washington State. In this study, the Juvenile Salmon Acoustic Telemetry System (JSATS) was selected because of its high carrier frequency (416.7 kHz) and short signal duration yielding good system resilience in shallow, noisy, and constrained environments. Detection efficiencies from the controlled field experiments were over 80 % (mean ± standard error (SE) = 85 ± 2 %) for most locations within the fishway at Wanapum Dam. Detection efficiency was nearly 100 % (mean ± SE = 97 ± 1 %) in the fishway entrance when the transmitters (also referred to as tags) were within 10 m of the hydrophones. The detection probabilities for the live fish experiment were 100 % at all deployment locations. This study suggests that a 416.7-kHz acoustic telemetry system with binary phase shift-keyed encoding is capable of reliably detecting fish within a large fishway, thus providing a reliable tool to enable researchers to understand and study fish behavior and their fate near and in fishways.

Highlights

  • The ability to track fish in the vicinity of dams and detect the presence of fish in fishways is critical to understanding the migration biology of upstream migrating fish and their passage success

  • The Bio-Acoustics and Flow Laboratory (BFL) is accredited by the American Association for Laboratory Accreditation (A2LA) to ISO/IEC 17025:2005, which is the international standard for calibration and testing laboratories

  • Controlled field experiments demonstrated that the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled receiver systems can reliably detect the acoustic signal from tags in confined spaces, including the fish ladder entrance, inside the fish ladder, and in the weir pool

Read more

Summary

Introduction

The ability to track fish in the vicinity of dams and detect the presence of fish in fishways ( referred to as fish ladders) is critical to understanding the migration biology of upstream migrating fish and their passage success. While PIT tags may provide detection data within the confined spaces of fishways, they cannot be detected in dam tailraces or forebays, making them ineffective for studies of overall passage behavior of migratory fish encountering large hydroelectric dams. Background noise levels at each location in the confined spaces were estimated from data collected with the deployed JSATS cabled receiver systems. The hydrophones (Model SC001, Sonic Concepts Inc., Bothell, WA, USA) have a sensitivity of −180 dB re 1 V/μPa at 416.7 kHz. From data files collected by the JSATS cabled receiver systems, portions that did not contain any transmissions of tag signals were selected and were considered to contain only background noise. The background noise level in the BFL acoustic test tank was estimated using the same types of instruments as in the field

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call