Abstract
Five kinds of oxide fluxes, MnO 2, TiO 2, MoO 3, SiO 2, and Al 2O 3, were used to investigate the effect of activated tungsten inert gas (activated TIG) process on weld morphology, angular distortion, delta-ferrite content, and hardness of Type 316L stainless steels. An autogenous TIG welding was applied to 6 mm thick stainless steel plates through a thin layer of flux to produce a bead-on-plate welded joint. The oxide fluxes used were packed in powdered form. The experimental results indicated that the SiO 2 flux facilitated root pass joint penetration, but Al 2O 3 flux led to the deterioration in the weld depth and bead width compared with conventional TIG process. Activated TIG welding can increase the joint penetration and weld depth-to-width ratio, thereby reducing angular distortion of the weldment. On the basis of the present results, it is considered that the centripetal Marangoni convection and constricted arc plasma as a mechanism in increasing the penetration of activated TIG joint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.