Abstract
The measurement of neutrino magnetic moment larger than 10-19 μB would be a clear signature of physics beyond the standard model other than the existence of massive Dirac neutrinos. The use of a spherical proportional counter detector filled with gas at 40 bar located near a nuclear reactor would be a simple way to perform such a measurement exploiting the developments made on such a technology for the search of dark matter and neutrinoless double beta decay. Different targets can be used just by replacing the gas: xenon, CF4 and argon were compared and the sensitivity in one year of data taking could reach the level of 4.3 × 10-12 μB , 6.5 × 10-12 μB , and 8.5 × 10-12 μB , respectively.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.