Abstract
The optimization of the performance of a single-stage Linde-Hampson refrigerator (LHR) operating with six different binary refrigerants (R23/R134a, R23/R227ea, R23/R236ea, R170/R290, R170/R600a and R170/R600) with ozone depletion potentials (ODPs) of zero was conducted using a new approach at the temperature level of −60 °C. Among these binary refrigerants, the 0.55 and the 0.6 mole fractions of R23 for R23/R236ea are the most prospective nonflammable ones for the medium and low suction pressure compressors, respectively. For these two kinds of compressors, the 0.6 and the 0.65 mole fractions of R170 for R170/R600, respectively, are the most prospective binary refrigerants with low global warming potentials (GWPs). The results of optimization of pressure levels indicate that the optimum low pressure value for coefficients of performance (COP) is achieved when the minimum temperature differences occur at both the hot and the cold ends of the recuperator at a specified composition and pressure ratio. Two useful new parameters, the entropy production per unit heat recuperated and the ratio of heat recuperating capacity to the power consumption of the compression, were introduced to analyze the exergy loss ratio in the recuperator. The new approach employed in this paper also suggests a promising application even to the optimization of the performance with multi-component refrigerants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.