Abstract
A resonant fiber-optic gyroscope (RFOG) based on a broadband source can avoid the fundamental drawback of coherence detection processing while possessing the greater sensitivity afforded by the finesse of the fiber-optic ring resonator. In this paper, the basic operation principle is presented and demonstrated in detail, and various noise sources, as well as the temperature effect encountered in this broadband source-driven RFOG, are studied and analyzed. Then a combined modulation technique is proposed to suppress the residual backscattering noise. To further reduce the effect of temperature transience, an asymmetric fiber ring resonator is designed. In the experiment, a bias stability of 0.01°/h is successfully demonstrated with a 100 m-long fiber ring resonator of 8 cm diameter in a laboratory environment without temperature control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.