Abstract

The rate responsiveness of a single chamber, accelerometer-based pacemaker with an autocalibration function (Opus G VVIR pacemaker, ELA Medical) was studied with a daily life protocol developed to automatically optimize the programming of accelerometer-based sensors. This new sensor was compared with two other body activity sensors that were manually optimized patient by patient. Forty-three pacemaker recipients (mean age 71 +/- 11 years), paced > 95% of the time, underwent a daily life protocol consisting of rapid walking for 6 minutes (W), climbing upstairs for 1.5 minutes (U), and downstairs for 1.5 minutes (D), alternated by recovery phases. The results were compared with performances measured in a control population of healthy subjects and in two paced patient populations (one equipped with a Dash Intermedics VVIR pacemaker and the other equipped with a Sensolog III Pacesetter/St. Jude VVIR pacemaker). Sex distribution and mean age between paced patients and control subjects were statistically comparable. The mean heartrate achieved by all paced patients at each time sample was compared with the normograms, assigning acceleration (slope) and rate (rate) scores for exercise and recovery phases. Scores ranged from -10 (hypochronotropic) to +10 (hyperchronotropic). Zero represents exact concordance with the responses of healthy individuals, and values between -2.5 and +2.5 were considered statistically similar to normal. During W, although the overall performances of the Dash, Sensolog, and Opus G did not statistically differ from healthy controls, the scores obtained by the Opus G were significantly closer to controls than those of the two other pacemakers (P = 0.02). For U, the three sensors were hypochronotropic (P = 0.03), though the Opus G was associated with a heart rate response closer to that of healthy controls (P = 0.04). D provided similar mean heart rate scores for the Opus G and the Dash compared with healthy controls, in contrast with the hyperchronotropic behavior of the Sensolog (P = 0.02). Opus G revealed a physiological modulation of the heart rate for W and D tests with a slightly hypochronotropic behavior during U. The Opus G autocalibration function provided daily life performances closer to those of healthy controls than two other pacemakers equipped with a body activity sensor that were manually optimized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call