Abstract
There is an increasing need for inexpensive packaging structures for demanding industrial electronics applications. This paper studies the usability of a polymer-based sensor package at very high temperatures. Resistance-based temperature sensors were attached with polymer-based electrically conductive adhesives (ECAs) onto flexible polyimide (PI) printed circuit boards (PCB). The materials used in the structure were not specifically designed for high temperature use. However, they were all commercial materials, easily available and typically reliable under normal use conditions of consumer electronics. The samples were aged at 240°C and electrically monitored during the test. Electrically, the sensor samples were observed to fail after 100 h of aging. However, material characterisation revealed that the materials started to degrade much earlier. The adhesive layer in the PI PCB and the ECA materials started to degrade after just 30 h of aging at 240°C, and mechanically the materials were observed to become brittle, making them prone to cracking and delamination. The results showed that such a polymer package is usable at 240°C for relatively short exposure times, but under longer exposure times the mechanical reliability of the package deteriorates and this needs to be taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.