Abstract

The rapid detection of infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is necessary in the ongoing pandemic. Antigen-specific point-of-care tests (POCT) may be useful for this purpose. Here, such a POCT (SARS-CoV-2 NADAL® COVID-19 Ag) was compared to a laboratory-developed triplex real-time polymerase chain reaction (RT-PCR) designed for the detection of viral nucleoprotein gene and two control targets. This RT-PCR served as a reference to investigate POCT sensitivity by re-testing upper respiratory tract (URT) samples (n = 124) exhibiting different SARS-CoV-2 loads in terms of RT-PCR threshold cycle (Ct) values. The optical intensities of the antigen bands were compared to the Ct values of the RT-PCR. The infectivity of various virus loads was estimated by inoculating Vero cells with URT samples (n = 64, Ct 17-34). POCT sensitivity varied from 100% (Ct < 25) to 73.1% (Ct ≤ 30); higher SARS-CoV-2 loads correlated with higher band intensities. All samples with a Ct > 30 were negative; among SARS-CoV-2 free samples (n = 10) no false-positives were detected. A head-to-head comparison with another POCT (Abbott, Panbio™ COVID-19 Ag Rapid Test) yielded similar results. Isolation of SARS-CoV-2 in cell-culture was successful up to a Ct value of 29. The POCT reliably detects high SARS-CoV-2 loads and rapidly identifies infectious individuals.

Highlights

  • At the end of 2019, local health authorities reported unusual cases of pneumonia inWuhan, a large city in the Hubei Province, China [1]

  • A modified protocol for the MagMAX Viral/Pathogen kit (Thermo Fisher Scientific) which uses a reduced sample input and only two washing steps was applied. This protocol was recently published by the manufacturer as an application note to enable increased diagnostic throughput

  • The suitability of the laboratory-developed E- and N-gene triplex real-time polymerase chain reaction (RT-PCR) for SARSCoV-2 diagnostics was investigated by testing of defined EQA samples

Read more

Summary

Introduction

At the end of 2019, local health authorities reported unusual cases of pneumonia inWuhan, a large city in the Hubei Province, China [1]. A novel betacoronavirus has been identified as the causative agent of the disease This virus emerged globally and is designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) [1,2,3]. A few days after the first report of this novel airway infection, Corman et al published three one-step reverse transcription real-time polymerase chain reaction (RT-PCR) protocols for SARS-CoV-2 detection. These target parts of the ribonucleic acid (RNA)-dependent RNA polymerase gene, the envelope (E) protein gene, or of the nucleocapsid (N) protein gene [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call