Abstract

Iron Carbonate is a novel carbon-negative sustainable binder that is made from metallic iron powder waste and utilizes the chemistry of iron carbonation. To produce the binder, usually landfilled iron powder and other constituents (fly ash, limestone powder, metakaolin, sodium carbonate, sodium bicarbonate, powdered organic reducing agent, and water) are mixed together and exposed to a pressurized CO2 regime that leads to slow external diffusion. The carbonation of iron particles results in the formation of complex iron carbonates that have binding capabilities and mechanical properties similar or better compared to ordinary Portland cement (OPC)-based binders. The metallic particulate phase incorporated in the novel binders’ microstructure increases the toughness of Iron Carbonate because of the energy dissipation by plastic deformation of the unreacted and elongated iron particles which are strong and ductile. In addition, the matrix contains other additives including harder fly ash particles, softer limestone particles, and ductile clayey phases which significantly influence the overall fracture performance of the novel sustainable binder. Understanding the behavior of Iron Carbonate at high strain rates is important for a wide range of both military and civilian applications. The material behavior under highly dynamic conditions is significantly different from the material response under quasi-static conditions. The split Hopkinson (Kolsky) pressure bar (SHPB) system is used to test dynamic compressive mechanical response and failure behavior of Iron Carbonate under high strain rates to establish exceptional dynamic load mitigation characteristics for the carbon-negative sustainable binder under extreme combined environments. Dynamic tests are conducted on cylindrical Iron Carbonate specimens using a conventional SHPB set-up. The experimental arrangement includes a gas gun and three steel bars (a striker bar, an incident bar, and a transmitted bar), aligned along a single axis. The Iron Carbonate specimen is placed between the incident and transmitted bar and the striker projectile is fired toward the face of the incident bar. Due to the impact of the striker bar an incident pulse, a reflected pulse and a transmitted pulse are generated that build up the stress level in the specimen and compress it. Objective of the carried out dynamic compression tests on Iron Carbonate specimen is the determination of the stress equilibrium, true stress-strain plots and strain-rate. Analysis of the obtained pulses revealed that the transmitted pulses of the tested Iron Carbonate specimens were of much smaller magnitude than the incident and reflected pulses. As a result, achievement of stress equilibrium and homogeneous

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.