Abstract

Morphing wings have a high potential for improving the performance and reducing the fuel consumption of modern aircraft. Thanks to its simplicity, the compliant belt-rib concept is regarded by the authors as a promising solution. Using the compliant rib designed by Hasse and Campanile as a starting point, a compliant morphing wing made of composite materials is designed. Innovative methods for optimal placing of the actuation and for the quantification of the morphing are used. The performance of the compliant morphing wing in terms of three-dimensional (3D) structural behaviour and aerodynamic properties, both two- and three-dimensional, is presented and discussed. The fundamental importance of considering 3D coupling effects in the determination of the performance of morphing aerofoils is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.