Abstract
An oxygen-blown integrated coal gasification combined cycle (IGCC) plant with precombustion carbon dioxide capture and storage (CCS) is one of the most promising means of zero-emission generation of power from coal. In an IGCC plant with CCS, hydrogen-rich syngas with a wide variation of hydrogen contents is supplied to a gas turbine. Such hydrogen-rich syngas poses a great challenge to a low NOx combustor based on premixed combustion technology, because its high flame speed, low ignition energy, and broad flammability limits can cause flashback and/or autoignition. On the contrary, a diffusion combustor suffers from the high flame temperature of syngas and the resulting high NOx emission. The authors applied a “multi-injection burner” concept to a preliminary burner for hydrogen-rich syngas simulating that from IGCC with CCS. In a preliminary experiment under atmospheric pressure, the multi-injection burner worked without any flashback or any blowout. A prototype multicluster combustor based on the results of that preliminary study was made to be a dry low NOx combustor for hydrogen-rich syngas of IGCC with CCS. It was tested in experiments, which were carried out under medium pressure (0.6 MPa) using test fuels simulating syngas from IGCC with a 0% carbon capture rate, a 30% carbon capture rate, and a 50% carbon capture rate. The test fuels contained hydrogen, methane, and nitrogen, and had a hydrogen content ranging from 40% to 65%.The following conclusions were drawn from the test results: (1) the tested combustor allows the stable combustion of fuels simulating 0%, 30%, and 50% CCS, (2) a convex perforated plate swirler is effective to suppress combustion oscillation, which allows NOx emissions to be less than 10 ppm through the variation of fuel simulating 0%, 30%, and 50% CCS, (3) the extended stable combustion region and enhanced entrainment and mixing due to the convex perforated plate improves the cooling of the combustor liner metal to be less than the liner metal temperature criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.