Abstract

A novel biotrickling filter using a 3D-printed honeycomb-monolith as its filter bed has been proposed and studied in this work and a solution to bed-clogging problems using pigging was demonstrated. The inlet H2S concentration in the mimic biogas was controlled around 1000 ppmv and the empty bed gas residence time (EBRT) was 41 s corresponding to a loading rate of 127 g S–H2S m−3 h−1. The influence of different H2S/O2 ratios on the removal performance and fate of sulfur end-products was investigated. The results indicated that at a H2S/O2 molar ratio of 1:2, an average removal efficiency of 95% and an elimination capacity of 122 g H2S m−3 h−1 was obtained. Under all conditions investigated, elemental sulfur (rather than sulfate) was the dominant end-product which mostly accumulated in the bed. However, the monolith bed design reduced the risk of clogging by elemental sulfur, while bed pigging was shown to be an effective means to remove excess biomass and elemental sulfur accumulated inside the bed and extend the life of the system indefinitely. Altogether, these findings could lead to significant process improvement for biological sweetening of biogas or for removing biomass in biotrickling filters at risk of plugging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.