Abstract
Seismic performance of a specific type of moment resisting precast concrete beam-column connection was investigated through reversed cyclic load tests. Structural steel components were incorporated with precast concrete beam and column elements in the experiments to provide a ductile moment resisting connection. Additionally, nonlinear finite element analysis (FEA) of typical monolithic and precast connections was performed to investigate the performance and failure modes of these connections. Concrete Damage Plasticity (CDP) model was used to capture nonlinearities in concrete under cyclic loading. Good agreement was achieved between experimental and numerical results, which indicates that the finite element model is capable of capturing failure modes of the investigated precast connections. Agreement between the experimental and numerical behaviors was valid in terms of both the global load–displacement response as well as the local response, such as the force within connection rods and the beam curvature. Behavior of the precast concrete connection was influenced significantly by the anchorage detail used for steel connection plates and the beam reinforcement detailing in the vicinity of the connection. Simple detailing modifications resulted in major improvements in the performance of connection in terms of strength, stiffness and energy dissipation characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.