Abstract
The performance of Joule-Thomson (JT) cryocoolers can be improved by introducing ejectors. Ejectors with various geometric features have been proposed and investigated for cryogenic cooling in earlier studies, but only limited research is done on ejectors with a nozzle throat diameter less than 1 mm. In this paper, we present a miniature ejector with a nozzle throat diameter of 162 μm that was measured using X-ray computed tomography. When the ejector was operated with nitrogen gas at 295 K with a primary inlet pressure of 80 bar, a secondary inlet pressure of 0.5 bar and an outlet pressure of 1.2 bar, the primary and the secondary mass-flow rates were 394 mg/s and 83 mg/s, respectively. The measured primary mass-flow rate was quite close to the value predicted by a dynamic model, whereas the measured secondary mass-flow rate was lower than the predicted value, which was mainly caused by a non-axisymmetric machining defect of the nozzle that was assumed to be axisymmetric in the dynamic model. Besides, the effects of operating pressures and nozzle position on the ejector performance were analyzed. The study demonstrates the applicability of a miniature ejector in a JT cooling cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.