Abstract

Hollow fiber membrane bioreactors have emerged as a promising technology for use in the treatment of volatile organic compounds (VOCs), due to their high surface area for VOC mass transfer and significant biodegradation capacity. In this study, a bioreactor operated in a diffuser mode using a submerged, hollow fiber membrane module (referred to as membrane diffuser bioreactor, MDBR) was employed in order to investigate its performance for the treatment of gaseous toluene. MDBR experiments were performed at different inlet toluene concentrations of 54, 160, and 750 ppmv, respectively. Overall, toluene removal efficiencies were maintained in the range of 60–70% at each operating condition. The biomass density in the liquid phase was changed according to the inlet loading rate, but the toluene concentrations in the liquid phase were always extremely low, indicating that the overall reaction was controlled by the mass transfer rate of toluene, rather than by the biodegradation rate. Additionally, elimination ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call